手机浏览器扫描二维码访问
欧几里得学生卡农对欧几里得说:“如果可以可靠的求出两个数字的最大公约数?”
欧几里得说:“用辗转相除法就可以,如果求a和b的最大公约数,如果a大于b,那就是a除以b,然后得到余数,然后再让除数b除以余数,然后一直让除数除以余数,最后余数为o的时候,得到的除数就是a和b的最大公约数。”
卡农说:“假如说1997和615这两个数字。”
欧几里得说:“1997除以615,等于3余出152。”
卡农说:“然后怎么求?”
欧几里得说:“除数除以余数,615除以152等于4余7.”
卡农说:“然后152除以7等于21余5.”
欧几里得接着说:“没错,然后7除以5,等于1余2.”
卡农说:“5除以2,等于2余1.”
欧几里得说:“2除以1,等于2余o.”
卡农说:“不能再往下了,余数已经为o,所以1997和615的最大公约数为1.”
欧几里得说:“所以说,相当于没有最大公约数。”
在以上基础上,后来数学中展了环的概念,整环R是符合一下接个要求的:
1、a关于加法成为一个abe1群(其零元素记作o);
2、乘法满足结合律:(a*b)*c=a*(b*c);
3、乘法对加法满足分配律:a*(b+c)=a*b+a*c,(a+b)*c=a*c+b*c;
如果环a还满足以下乘法交换律,则称为“交换环”:
4、乘法交换律:a*b=b*a。
如果交换环a还满足以下两条件,就称为“整环”(integra1domain):
5、a中存在非零的乘法单位元,即存在a中的一个元素,记作1,满足:1不等于o,且对任意a,有:e*a=a*e=a;
6、ab=o=>a=o或b=o。
而后来也引入了欧几里得整环的概念,这是抽象代数中,这是一种能作辗转相除法的整环。凡欧几里得整环必为主理想环。
一个天赐凤命的小丫头,却因一种封印变成痴傻不谙世事的疯子,受尽凌辱。高冷霸道,深情翩然的王爷,屋檐观星时碰见艳色风华的绝代佳人,心头一颤。难道是她回来了?这是个虐妻一时爽,追妻火葬场的故事。这是个爱恩交织的武侠世界,毒术,武功,内力,暗器,堪称应有尽有。(ps本文1v1,男女主身心干净,欢迎入坑)凰妻御权...
主角林泰的手机里突然出现一个游戏系统,使他获得了能够和各种游戏人物进行同调!得到魔法力量!得到布置炮台!得到无限成长的能力!世界mc化!获得游戏人物的力量,漫游诸天...
简介关于她能行么故乡被毁,小被俘。就连最强大的帝国也战败了。真的能靠她一人之力挽回败局吗?一定要将故乡从敌人手中夺回来!游戏同人,已得到原作者同意。...
简介关于开局修为千年,活到天荒地老沈青穿越到修仙世界,觉醒了修为系统。沉睡十年,就会获得百倍的修为,也就是一千年的修为。但前提是他得需要灵石,才能在沉睡中获得百倍加成,起步十年。沈青对打打杀杀没什么兴趣,他只想长生久世,体验红尘事,掌握世间法,看遍人间事,逍遥天地间,畅游星河梦,顺便赚赚钱。毕竟修为上去了,寿命也自然久远了。于是他沉睡十年,曾经的城镇已经物是人非。沉睡百年,此时的南域已经生变故。沉睡千年,当年的宗门已经走向没落。沉睡万年,昔日的小鸟已经成为神鸟。百万年后一名黑袍面具男子,冷冷的说道姑娘你挡道了,不要妨碍我赚钱。青衣女子傲然道阁下是谁?这么嚣张,你家在哪?指个方向,我只出一剑。至高神,沈青。说着,他一剑斩出,星河破碎,整个诸天万界为之一颤。...
作品简介...
为自己的新书广告一下,为一部都市类型小说。有如下几种方式能找到,在本浏览页把尾数替换为8522o。或点击作者博客,可以找到。或在搜索栏中搜索。或在页白金作者推荐栏中,可以找到。手头上有闲票的哥们,不要吝啬,帮忙投上票,不胜感激。无良皇帝...