书海小说网

手机浏览器扫描二维码访问

第67章 你行我给五十万奖金求订阅求月票(第1页)

馀江省,潇州市,馀江大学,距离紫金校区不远处的紫金西苑小区里,馀江大学数学科学学院研究所的薛松教授正在小区里散着步。

作为馀江大学最年轻的博导,更是最年轻的百人计划研究员之一,现年不过三十八岁的薛松教授未来可以说是前途无量。

能有现在的成就还真不能说完全是靠着良好的家境,事实上薛松本就属于少年天才那一类人。

在国内接受完九年义务教育之后,他就被父母送到了大洋彼岸,入读普林斯顿国际数理学校。去的第一年就拿到了AMC12一等奖,并受邀参加AIME。

在AIME拿到了极高的成绩之后,更是在USAMO取得了不错的成绩,

本来那一年他也收到了加入IMO的邀请,但因为父母的反对,加上他也觉得考累了,便乾脆他选择了放弃代表美国参加IMO的资格。

但即便如此,他还是被直接保送到了普林斯顿大学数学院就读,用三年就完成了本科学业,并被普林斯顿知名数学教授曼朱尔·巴尔加瓦看重,成了这位着名数论学家的学生,开始硕博连读。

曼朱尔·巴尔加瓦的主要研究方向是高阶数论跟代数几何,并曾经因为这方面的贡献拿到过菲尔兹奖。

薛松跟着这位导师主要从事针对整数论的学习跟研究,涵盖了二次形式到椭圆曲线等比较广泛的主题。他的博士毕业论文就是关于整数论中整数分布的深层次结果。

博士毕业之后,因为种种原因,薛松选择了回国发展。并在五年前入职了馀江大学。

薛教授的能力的确是很出众的,同龄人还在头疼怎麽才能过3+3的时候,他直接两连跳,不但拿到了副教授职称,更是凭藉一篇发表在《数学年刊》上的论文,拿到了百人计划的名额。

更是馀江大学未来重点培养的人才,不出意外的话,未来肯定是要往院士的方向冲击的。

数学家,尤其是研究数论的数学家散步肯定不止散步那麽简单,大脑通常也不会休息,而是思考一些乱七八糟的东西。

就很突然的,兜里的手机突然开启了连续震动模式。

薛松停下了思考,拿出手机,发现是微信里自己手底下的研究生群直接炸锅了,几个学生@他后,直接在群里讨论上了。

「老板,您在代数与数论小树屋里出的那道题竟然真被那个菜鸟给解了!您快去看看呀!」

「是的老板,那个菜鸟真解出来了!答案竟然还是对的,我们刚刚验证过了。」

「简直神了,这哪里是什麽菜鸟?这是把哪位大拿的小号在跟我们开玩笑吧2

「虽然我也觉得很可能是哪位大佬来跟大家开玩笑,但说实话,你们觉得那些话是一位大佬能写出来的吗?还自称小爷?到时候身份万一曝光了,得多尴尬啊!」

薛松大概浏览了一遍群里聊天的内容,没有在群里回话,而是扭头便往家走虽然手机也可以直接登入论坛,但如果涉及到他出的那道题,用电脑更方便。

他出的题,当然知道如果真有人把解求出来,这道题的解会有多大。起码手动演算很累,必须得上计算机。

事实上他选择在论坛上冒泡,并给出这麽一道题,是因为他最近研究中的一个小突破,简单来说就是他找到了一种方法,能够证明类似于他所出题型的一类方程具备整数解。

这也是他已经投稿给ActaMathematica的一篇论文《AClassof

DiophantineEquationsArisingfromSymmetricFractionalSums:E.istence

ofIntegerSolutions》。

论文主要内容就是证明了对称分数和的一类丢番图方程整数解的存在性。

他给出的那个方程,就是这一类方程中比较具备代表性的一个。

这里需要给大家解释一个数学方面的小知识。

数学中证明某类甚至某个方程有整数解跟直接求出数值解并不是一回事。

前者是使用数学推理跟证明技巧,透过对方程结构的分析以及数学归纳法的使用,确认该类方程有且至少有一个整数解。

求解则是透过具体的计算步骤,比如运用合并同类项丶移项丶因式分解等等方程求解技巧,计算出方程具体的数值解。

换句话说,虽然薛松已经确定了这个方程具备整数解,但其数值解是多少,

他其实也不知道。唯一能确定的是,这个数值非常巨大!

事实上,丢番图方程在数论领域本就是一个未解的难题。

比如费马猜想就是最着名的丢番图方程之一,当然被证明之后就成了费马大定理。

1900年在法国巴黎举办的第二届世界数学家大会上,着名数学家希尔伯特在做开场报告时,曾提出了着名的一百个问题,其中第十个就是关于丢番图方程的原文是:是否存在一个通用的演算法,能够决定任意给定的丢番图方程是否存在整数解。

1970年,针对这第十问,前苏国数学家尤里·马季亚舍维证明了并不存在这样一个通用演算法,给了希尔伯特第十个问题一个很确定的否定答案。

但这并不代表着丢番图问题就没有研究价值了。

事实上这个否定的结论恰好证明了,丢番图方程在某些情况下具有极大的复杂性,甚至可以说,它超越了传统演算法可以解决的范畴,在计算理论中具备着根本性的重要作用。

所以丢番图方程依然被视为数论中的世界性难题之一,尤其是在更高维数和更复杂的情况下。

现在竟然有人徒手直接把这个方程解求出来了?

还是个刚申请加入论坛的菜鸟?

薛松只觉得脑子都是嗡嗡的。

华夏数学圈子就那麽大,研究数论的就更少了。

所以代数数论小树屋其实就是一个特别小众的论坛,宣传全靠口口相传,也没有任何盈利需求,就是一个国内研究代数与数论教授跟研究生们日常讨论的聚集地。

一般人本就不太可能闯进来,哪怕不小心点进来,想要注册,面对从题库中随机挑选的五十道选择题,也只能抓瞎。

热门小说推荐
巨星从解约开始

巨星从解约开始

什么?陆凡又发新歌了?他好像还顺便挑战了一下国际钢琴大师那世上还有他不懂的东西吗?好像似乎或许应该没有吧!歌手导演象棋大师文学家钢琴家诗人,其实我没有你们想的这么厉害,我只是略懂一二而已!这是一个小艺人获得系统,征服各个艺术领域,成为世界巨星的故事。书友交流群56巨星从解约开始...

夫人有毒,侯爷宠上天

夫人有毒,侯爷宠上天

祖母口口声声最宠她,在她被诬陷之时却毫不犹豫逼她去死,父亲狼心狗肺,对母亲恩将仇报,痛下毒手。一场私通外男的阴谋,让死而复生的沈凌欣看清所谓亲人的真实面目。精通毒术的她惩奸人救母亲,就连高高在上却德不配位的太子殿下,她也敢将其拉下高台,让其跌落尘埃,给无辜惨死的外祖一家英魂赔罪!只不知何时,身后多了位煞星降世的侯爷。侯爷可知我心狠手辣,浑身是毒,就不怕不明不白丢了性命?沈凌欣浅笑嫣然,手指微动间毒雾弥漫。夫人有毒,本侯又不是第一天得知,何惧之有?毒药夫人尽管用,若是不够,本侯再添就是。满室馨香,宸阳侯眸色渐深,至于丢了性命夫人是想换夫君不成?这一生下一世生生世世,夫人恐怕都难以达成此愿!...

盖世传奇

盖世传奇

我林小宝表示,一点都不难!随便种点桃子,都能卖出天价,随便种点稻米,都能被有钱人哄抢!随便展露一下,全国的富豪都跑来给送钱。哎这一仓库的现金,啥时候才能花完啊。...

圈占

圈占

有人问我,场子里的男人各个潇洒又有钞,我为什么看不上?我只是笑一笑,因为我清楚,男人对你的好是毒药,碰一下,便要千疮百孔的还回去。我不是什么做梦人。我只是一个想要安安稳稳往前走的女人。人说我若想前路无阻,必将爱上孤独。所以我,游走于纸醉金迷的世界,从不走心,就在我以为人生会在谨小慎微中死去时,一个人的出现,却忽然打圈占...

韩综:从卧底新世界开始

韩综:从卧底新世界开始

他是丁青和李子成的过命兄弟。他是隐藏最深的局内人。他是南韩正在崛起的第六大财阀。而在这一切之前,他却只是个看似因受牵连而被逐出警队的小小卧底。新世界剧情已开启。在看到眼前漂浮的文字之后,林巍便对自己誓。终有一日,我要将这韩半岛,踩在脚下!新世界,黄海,局内人,犯罪都市当无数个故事汇聚在同一个世界之后,这平行世界的韩半岛,就注定会诞生一个传奇。...

每日热搜小说推荐