手机浏览器扫描二维码访问
杨辉三角形,一目了然,每个数等于它上方两数之和。
研究过《九章》、《缉古》、《缀术》、《海岛》这些算法的楚衍说:“我现了一个奇特三角,每行数字左右对称,由1开始逐渐变大。”
1o5o年写过《释锁算术》的贾宪说:“这个三角第n行的数字有n项。”
1261年,写过《详解九章算法》的杨辉说:“这个三角形前n行共[(1+n)n]2个数。”
13o3年朱世杰说:“第n行的m个数可表示为net-1个不同元素中取m-1个元素的组合数。”
1427年,写过《算术的钥匙》的阿拉伯人阿尔·卡西说:“第n行的第m个数和第n-m+1个数相等,为组合数性质之一。”
1527年德国人阿皮亚纳斯说:“每个数字等于上一行的左右两个数字之和。可用此性质写出整个杨辉三角。即第n+1行的第i个数等于第n行的第i-1个数和第i个数之和,这也是组合数的性质之一。即net,i-1)。”
1544年,写过《综合算术》的德国人米歇尔.斯蒂费尔说:“这是二项式展开式系数,其中(a+b)n的展开式中的各项系数依次对应三角的第(n+1)行中的每一项。”
斐波那契说:“将第2n+1行第1个数,跟第2n+2行第3个数、第2n+3行第5个数……连成一线,这些数的和是第4n+1个斐波那契数;将第2n行第2个数(n>1),跟第2n-1行第4个数、第2n-2行第6个数……这些数之和是第4n-2个斐波那契数。”
1545年法国的薛贝尔说:“将第n行的数字分别乘以1o^(m-1),其中m为该数所在的列,再将各项相加的和为11^(n-1)。11^o=1,11^1=1x1o^o+1x1o^1=11,11^2=1x1o^o+2x1o^1+1x1o^2=121,11^3=1x1o^o+3x1o^1+3x1o^2+1x1o^3=1331,11^4=1x1o^o+4x1o^1+6x1o^2+4x1o^3+1x1o^4=,11^5=1x1o^o+5x1o^1+1ox1o^2+1ox1o^3+5x1o^4+1x1o^5=。”
1654年,写过《论算术三角形》的帕斯卡说:“第n行数字的和为2^(n-1)。1=2^(1-1),1+1=2^(2-1),1+2+1=2^(3-1),1+3+3+1=2^(4-1),1+4+6+4+1=2^(5-1),1+5+1o+1o+5+1=2^(6-1)。”
这个被欧洲人称之为帕斯卡三角形。
17o8年的pierreRaymonddemontmort说:“斜线上数字的和等于其向左(从左上方到右下方的斜线)或向右拐弯(从右上方到左下方的斜线),拐角上的数字。1+1=2,1+1+1=3,1+1+1+1=4,1+2=3,1+2+3=6,1+2+3+4=1o,1+3=4,1+3+6=1o,1+4=5。”
173o年的亚伯拉罕·棣·美弗说:“将各行数字左对齐,其右上到左下对角线数字的和等于斐波那契数列的数字。1,1,1+1=2,2+1=3,1+3+1=5,3+4+1=8,1+6+5+1=13,4+1o+6+1=21,1+1o+15+7+1=34,5+2o+21+8+1=55。”
后来人们也称呼这是中国三角形。
二维的杨辉三角有多项式系数,晶体晶格,单形的点线面或者是四维体,五维体等等这样的有价值的东西。其中是亏格为o的欧拉定理。对图论有重大帮助。对很多等差,甚至一级数列、二级数列等等有重要研究。
那三维的杨辉三角,肯定会有更加重要的信息。
高维的杨辉三角,肯定更加有价值。
或许轻松包括斐波那契数列,包括多亏格多面体的点线面等复杂信息。
或许杨辉三角是任何一个数学的终点。
近下来,就需要解决高维杨辉三角的数列问题了。有没有一种简单的办法来。
其中一个最重要的问题,就是二维的杨辉三角是否可以解决高维的杨辉三角问题?这也意味着,高维的杨辉三角简化成二维的杨辉三角问题。
这样的杨辉三角问题,是不是跟形数有关呢?有关系的话,是不是就变成了形数的问题?
一个天赐凤命的小丫头,却因一种封印变成痴傻不谙世事的疯子,受尽凌辱。高冷霸道,深情翩然的王爷,屋檐观星时碰见艳色风华的绝代佳人,心头一颤。难道是她回来了?这是个虐妻一时爽,追妻火葬场的故事。这是个爱恩交织的武侠世界,毒术,武功,内力,暗器,堪称应有尽有。(ps本文1v1,男女主身心干净,欢迎入坑)凰妻御权...
主角林泰的手机里突然出现一个游戏系统,使他获得了能够和各种游戏人物进行同调!得到魔法力量!得到布置炮台!得到无限成长的能力!世界mc化!获得游戏人物的力量,漫游诸天...
简介关于她能行么故乡被毁,小被俘。就连最强大的帝国也战败了。真的能靠她一人之力挽回败局吗?一定要将故乡从敌人手中夺回来!游戏同人,已得到原作者同意。...
简介关于开局修为千年,活到天荒地老沈青穿越到修仙世界,觉醒了修为系统。沉睡十年,就会获得百倍的修为,也就是一千年的修为。但前提是他得需要灵石,才能在沉睡中获得百倍加成,起步十年。沈青对打打杀杀没什么兴趣,他只想长生久世,体验红尘事,掌握世间法,看遍人间事,逍遥天地间,畅游星河梦,顺便赚赚钱。毕竟修为上去了,寿命也自然久远了。于是他沉睡十年,曾经的城镇已经物是人非。沉睡百年,此时的南域已经生变故。沉睡千年,当年的宗门已经走向没落。沉睡万年,昔日的小鸟已经成为神鸟。百万年后一名黑袍面具男子,冷冷的说道姑娘你挡道了,不要妨碍我赚钱。青衣女子傲然道阁下是谁?这么嚣张,你家在哪?指个方向,我只出一剑。至高神,沈青。说着,他一剑斩出,星河破碎,整个诸天万界为之一颤。...
作品简介...
为自己的新书广告一下,为一部都市类型小说。有如下几种方式能找到,在本浏览页把尾数替换为8522o。或点击作者博客,可以找到。或在搜索栏中搜索。或在页白金作者推荐栏中,可以找到。手头上有闲票的哥们,不要吝啬,帮忙投上票,不胜感激。无良皇帝...